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Me4Si. 
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million downfield from Me4Si. 
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H, 9.18. 
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(9) Crystal data for Mo2(OCH2CMe3)6: space group, P21/n; a = 18.160(10), 
b= 11.051 (7), C = 9.956 (6) A;/3 = 104.30(4)°; V= 1936 (2) A3; Z = 
2; Mo radiation; 1588 reflections having / > 3cr(/) and 28 < 45°. Refined 
anisotopically to R1 = 0.071 and R2 = 0.088. 

(10) M. H. Chisholm, F. A. Cotton, M. W. Extine, and B. R. Stults, J. Am. Chem. 
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(11) M. H. Chisholm and M. W. Extine, J. Am. Chem. Soc, 97,5625(1975). 
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benzene. See ref 1 and references therein. We have recently prepared 
Mo(OCH2CMe3)4 and find this to be dimeric in solution. M. H, Chisholm and 
W. W. Reichert, unpublished work. 

(13) The reaction Mo2(NMe)6 + 6ROH -» Mo2(OR)6 was previously noted for 
R = f-Bu and SiMe3 (ref 2c); for less bulky groups, e.g.; R = Et, Me, dinu-
clear compounds Mo2(OR)6 are not isolated. Results to be submitted for 
publication. 

(14) M. H. Chisholm, F. A. Cotton, M. W. Extine, B. R. Stults, J. Am. Chem. Soc, 
98,4683(1976). 
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Chirality Retention in Twist Rearrangements of 
Pseudooctahedral Molybdenum and Tungsten Complexes 

Sir: 

We wish to present new evidence for a type of stereochem-
ically nonrigid behavior which is capable of maintaining chi­
rality while allowing interconversion of certain isomers. The 
rearrangement appears to involve a trigonal twist about a 
specific axis of a pseudooctahedral complex. This mecha­
nism and the unique structural features proposed for 
(V-C3H5)Mo(CO)2(diprios)Cl and similar complexes are 
based on recent crystallographic and NMR results. 

Low temperature 13C NMR spectra of (^-C3H5)-
Mo(CO)2(diphos)Cl show that the two carbonyl ligands are 
nonequivalent. This contrasts with previous structural studies 
of analogous diamine and diether chelates,' ~6 which imply that 
the carbonyls should occupy equivalent positions in a pseu-
dooctahedron. In the diamine and diether structures the bi-
dentate ligand and the two carbonyls lie in a horizontal plane, 
whereas the allyl group and the remaining ligand lie in trans 
positions above and below the plane, respectively, as in con­
figuration I. Either structure II or III would be consistent with 
most aspects of the low temperature NMR spectra, but the 
nature of the inequivalence was revealed straightforwardly by 
a three-dimensional x-ray crystallographic analysis. The mo­
lecular structure7,8 is as shown in Figure 1. This establishes that 
the molecule can be appropriately described as pseudoocta­
hedral.9 An equatorial plane10 can be defined to include the 
two carbonyls, the halogen, and one phosphorus atom of the 

CM 

Figure 1. A perspective view of (?;3-C3H5)Mo(CO)2(diphos)Cl. Hydrogen 
atoms are not shown. 

I Il III 

chelate. The ^-C^Hs ligand and the other phosphorus of the 
chelate ligand lie on opposite sides of this plane. Thus the 
complex has no plane of symmetry, which is consistent with 
the NMR results, and can be schematically represented by 
configuration III. 

We have found that complexes of the general formula 
^-C3H5M(CO)2(L-L)X where M = Mo or W; L-L = the 
bidentate phosphines"12 diphos, dppm, dppe, or arphos; and 
X = Cl or I exhibit dynamic 1H, 13C, and 31P NMR spectra 
indicative of intramolecular rearrangement barriers on the 
order of 12 kcal/mol. 

The room temperature 3lP-decoupled proton NMR spectra 
of the iodide complexes containing diphos, dppe, or dppm ex­
hibit three sets of resonances for the allyl moiety, typical of the 
AA'BB'X pattern of symmetrical 773-allyls. At low tempera­
tures, however, nonequivalence of the two ends of the allyl is 
indicated by an ABCDX pattern.13 In the diphos complex, the 
diphos methylene protons appear as an ABCD pattern at —100 
0C and an AA'BB' pattern at 30 0C. The methylene protons 
of the dppm, however, remain nonequivalent and exhibit an 
AB pattern throughout the temperature range in which the 
allyl resonances average.13 

Except in the arphos derivative, the 13C spectra indicate 
equivalence of the terminal carbon nuclei of the allyl moiety 
and the carbonyls. The averaged spectra of the diphos com­
plexes exhibit an apparent triplet for the methylene carbons. 
At low temperatures, the terminal carbons of the allyl, the 
carbonyl carbons, and the methylene carbons of the diphos 
ligand are nonequivalent. 

The 31P spectra of the complexes consist of a single reso­
nance at room temperature and two (or four depending upon 
the resolution of3' P-3 ' P coupling) lines of equal intensity at 
low temperature. 

The infrared spectra are characteristic of cis-carbonyls; i.e., 
two carbonyl absorptions of approximately equal intensity are 
observed. Thus, the spectral data indicate that the solution 
structure is the same as that found in the crystal. A rear-
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rangement that is fully consistent with the dynamic N M R 
spectra is shown below. 

This mechanism can be described as a trigonal twist, in 
which the rotation of the triangular face formed by the halogen 
and the two phosphorus atoms relative to the face formed by 
the allyl and two carbonyl groups.14 The chirality at the metal 
center may be designated (S) or (R) according to the octa­
hedral sequence and chirality rules set forth by Cahn, Ingold, 
and Prelog.15 Using this terminology, the inversion of chirality 
produced by the rearrangement can be described as an inter-
conversion of (S)- and (^)-(7)3-C3H5)M(CO)2(P-P)X. This 
process is consistent with the averaged spectra which show that 
the methylene protons of diphos remain nonequivalent, the 
methylene protons of dppm remain nonequivalent, the terminal 
allyl protons are not equally coupled to both phosphorus nuclei, 
but the vinylic protons of dppe are averaged. The carbonyl 
carbon nuclei show unequal coupling to the phosphorus nuclei 
as well, indicating that the relationship of the allyl to the car-
bonyls about that triangular face is retained. Therefore, even 
though enantiomerization occurs at the metal center in this 
case,16 the spatial relationships within the X - P ' - P " unit are 
maintained. That is, even though the structure is nonrigid, the 
same side of the chelating phosphine remains oriented toward 
the halogen. 

This implies that in the chiral structure formed with arphos, 
this twist process will interconvert certain pairs of isomers, but 
not invert the chirality of the X-As-P unit. A formal de­
scription of this process does not have an analogue in structures 
based on tetrahedra. In a tetrahedron on (R) or (S) designation 
can be assigned to each of the triangular faces; however, the 
specification of the chirality of one face is sufficient to com­
pletely describe the configuration about a tetrahedron. In 
sufficiently complex octahedral structures, the chirality rules 
break down;16 nevertheless, the chirality associated with each 
of the triangular faces can still be specified. That is, if 
As replaces P' in the diagram, an (.R)-AsPX configuration 
should be retained during the rearrangement, whereas 
(/?)-X(aIlyl)CO is inverted to (S*)-X(ailyl)CO. Thus the 
isomerization observed for the arphos derivative might be 
described as an epimerization. 

The allyl-metal-dicarbonyl fragment is prochiral and since 
the As-P-X unit should retain its chirality, the carbonyls and 
the termini of the allyl should be diastereotopic. Thus, one 
observes that the terminal protons of the allyl are not equiva­
lent in the averaged spectra of the arphos derivative.17 The 
essential feature of this discussion is that, despite the nonrig-
idity of the molecule, certain elements of chirality are retained 
during the rearrangements; therefore, asymmetric induction 
can be anticipated in the reactions of the allyl moiety. A de­
tailed discussion of the consequences of the chirality retention 
on the NMR spectra and the stereoselectivity of reactions of 
these complexes will be forthcoming. 
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An Azo Compound Route to Spiropentane Thermolysis 
Intermediates. Formation of Vibrational^ Excited 
Organic Molecules in the Thermal Decomposition of 
Pyrazolines, and Evidence Concerning the Distribution of 
Excess Energy in Reaction Products 

Sir: 

Questions concerning the mechanism of thermal decom­
position of spiropentane (1; Scheme I) have for some time 
centered around the relative energies of cleavage of the so-

Communications to the Editor 


